Search results for "global weak solution"

showing 6 items of 6 documents

First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities

2022

AbstractWe study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation $$\begin{aligned} iu_t+\Delta u=\lambda |u|^p+\mu |\nabla u|^q+w(x),\quad t>0,\, x\in {\mathbb {R}}^N, \end{aligned}$$ i u t + Δ u = λ | u | p + μ | ∇ u | q + w ( x ) , t > 0 , x ∈ R N , where $$N\ge 1$$ N ≥ 1 , $$p,q>1$$ p , q > 1 , $$\lambda ,\mu \in {\mathbb {C}}$$ λ , μ ∈ C , $$\lambda \ne 0$$ λ ≠ 0 , and $$u(0,\cdot ), w\in L^1_{\mathrm{loc}}({\mathbb {R}}^N,{\mathbb {C}})$$ u ( 0 , · ) , w ∈ L loc 1 ( R N , C ) . We consider both the cases where $$\mu =0$$ μ = 0 and $$\mu \ne 0$$ μ ≠ 0 , respectively. We establish existence/nonexistence of global weak solutions. In ea…

Settore MAT/05 - Analisi MatematicaApplied MathematicsGeneral MathematicsGlobal weak solutionNonlinear Schrödinger equationGeneral Physics and AstronomyCritical exponentZeitschrift für angewandte Mathematik und Physik
researchProduct

On the critical behavior for time-fractional pseudo-parabolic type equations with combined nonlinearities

2022

AbstractWe are concerned with the existence and nonexistence of global weak solutions for a certain class of time-fractional inhomogeneous pseudo-parabolic-type equations involving a nonlinearity of the form $|u|^{p}+\iota |\nabla u|^{q}$ | u | p + ι | ∇ u | q , where $p,q>1$ p , q > 1 , and $\iota \geq 0$ ι ≥ 0 is a constant. The cases $\iota =0$ ι = 0 and $\iota >0$ ι > 0 are discussed separately. For each case, the critical exponent in the Fujita sense is obtained. We point out two interesting phenomena. First, the obtained critical exponents are independent of the fractional orders of the time derivative. Secondly, in the case $\iota >0$ ι > 0 , we show that the gradie…

Algebra and Number TheoryCaputo fractional derivativecritical exponentSettore MAT/05 - Analisi Matematicapseudo-parabolic type equationglobal weak solutionAnalysiscombined nonlinearitie
researchProduct

Large Time Behavior for Inhomogeneous Damped Wave Equations with Nonlinear Memory

2020

We investigate the large time behavior for the inhomogeneous damped wave equation with nonlinear memory ϕtt(t,&omega

PhysicsPhysics and Astronomy (miscellaneous)General MathematicsNonlinear memoryWeak solutionlcsh:Mathematics010102 general mathematicsnonexistence resultglobal weak solutionDamped wavenonlinear memorylcsh:QA1-93901 natural sciencesinhomogeneous term010101 applied mathematicsChemistry (miscellaneous)Settore MAT/05 - Analisi MatematicaComputer Science (miscellaneous)damped wave equation0101 mathematicsMathematical physicsSymmetry
researchProduct

Nonexistence of global weak solutions for a nonlinear Schrodinger equation in an exterior domain

2020

We study the large-time behavior of solutions to the nonlinear exterior problem L u ( t , x ) = &kappa

Pure mathematicsPhysics and Astronomy (miscellaneous)General MathematicsGlobal weak solution01 natural sciencesDomain (mathematical analysis)symbols.namesakeSettore MAT/05 - Analisi MatematicaComputer Science (miscellaneous)Neumann boundary conditionNonlinear Schrödinger equationBall (mathematics)0101 mathematicsNonlinear Schrödinger equationPhysicsComplex-valued functionOpen unitOperator (physics)lcsh:Mathematics010102 general mathematicsUnit normal vectorlcsh:QA1-939010101 applied mathematicsMathematics::LogicChemistry (miscellaneous)symbolsExterior domainNonhomegeneous Neumann boundary condition
researchProduct

On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain

2021

Abstract We study the wave inequality with a Hardy potential ∂ t t u − Δ u + λ | x | 2 u ≥ | u | p in  ( 0 , ∞ ) × Ω , $$\begin{array}{} \displaystyle \partial_{tt}u-{\it\Delta} u+\frac{\lambda}{|x|^2}u\geq |u|^p\quad \mbox{in } (0,\infty)\times {\it\Omega}, \end{array}$$ where Ω is the exterior of the unit ball in ℝ N , N ≥ 2, p > 1, and λ ≥ − N − 2 2 2 $\begin{array}{} \displaystyle \left(\frac{N-2}{2}\right)^2 \end{array}$ , under the inhomogeneous boundary condition α ∂ u ∂ ν ( t , x ) + β u ( t , x ) ≥ w ( x ) on  ( 0 , ∞ ) × ∂ Ω , $$\begin{array}{} \displaystyle \alpha \frac{\partial u}{\partial \nu}(t,x)+\beta u(t,x)\geq w(x)\quad\mbox{on } (0,\infty)\times \partial{\it\Omega}, \e…

PhysicsMathematics::Functional Analysis35b3335b44QA299.6-433critical exponentMathematics::Complex Variables010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEshardy potentialMathematics::Spectral Theoryexterior domain01 natural sciencesDomain (software engineering)010101 applied mathematics35l05Settore MAT/05 - Analisi Matematicawave inequalitiesglobal weak solutions0101 mathematicsCritical exponentAnalysisAdvances in Nonlinear Analysis
researchProduct

Nonexistence of solutions to higher order evolution inequalities with nonlocal source term on Riemannian manifolds

2022

We establish sufficient conditions for the nonexistence of nontrivial solutions to higher order evolution inequalities, with respect to the time variable. We consider a nonlocal source term, and work on complete noncompact Riemannian manifolds. The obtained conditions depend on the parameters of the problem and the geometry of the manifold. Our main result recovers some nonexistence theorems from the literature, established in the whole Euclidean space.

Computational MathematicsNumerical AnalysisRiemannian manifoldsnontrivial global weak solutionsSettore MAT/05 - Analisi MatematicaApplied Mathematicshigher order evolution inequalitiesNonexistenceAnalysis
researchProduct